This then is the conundrum; we need air to circulate from outside to inside, but in areas with substantial external pollution that circulation continuously brings harmful outside pollution into our homes.
Outside vs Inside
Outside, Nature wages a powerful war of attrition against atmospheric pollution.
Wind disperses pollution, diluting its local effects. Natural chemical and photochemical interactions create an abundance of ‘hydroxyl radicals’ (called ‘Nature’s Detergent’ by scientists) which attack and neutralise a wide range of pollutants, and rain and snow wash pollution and its by-products out of the air.
Of course, in the urban environment, pollution can build up where it is created more quickly than nature can remove it.
Inside, the natural conditions which create hydroxyls are absent, and pollution, well, it hangs around for us to breathe it in!
What does the pollution consist of?
Before deciding on an effective strategy for reducing pollution leaking in from outside, it is necessary we understand the scope and nature of the pollution we are attempting to neutralise.
Historically, the main air pollution problem in both developed and rapidly industrialising countries has typically been high levels of smoke and sulphur dioxide emitted following the combustion of sulphur-containing fossil fuels such as coal, used for domestic and industrial purposes.
These days, the major threat to clean air is now posed by traffic emissions. Petrol and diesel powered vehicles emit a wide variety of harmful pollutants, principally carbon monoxide (CO), oxides of nitrogen (NOx), volatile organic compounds (VOCs) and particulate matter (PM2.5). Additionally, the photochemical reactions resulting from the action of sunlight on nitrogen dioxide (NO2) and VOCs create ozone.
Carbon Monoxide (CO)
CO (carbon monoxide) is a dangerous, colourless gas which reduces your blood’s ability to carry oxygen and can make you ill.
Oxides of Nitrogen (NOx)
The Committee on the Medical Effects of Air Pollution recently reviewed the evidence for the adverse health effects of NOx and concluded that:
Volatile Organic Compounds (VOCs)
VOCs include a variety of chemicals, some of which can have short- and long-term adverse health effects.
Ozone (O3)
Ozone can trigger asthma attacks and cause shortness of breath, coughing, wheezing, headaches, nausea, and throat and lung irritation, even in healthy adults.
Particulates (PM2.5)
Particulate matter, also called PM or soot, consists of microscopically small solid particles or liquid droplets suspended in the air.
PM2.5 refers to what are termed “fine particles” of below 2.5 microns in diameter. The smaller the particles, the deeper they can penetrate the respiratory system and the more hazardous they are to breathe.
Ultrafine particles (UFPs) are particulate matter of nanoscale size (less than 0.1 microns in diameter). UFPs are the main constituent of airborne particulate matter. Owing to their numerous quantity and ability to penetrate deep within the lung, UFPs are a major concern for respiratory exposure and health
PM pollution can cause lung irritation, aggravates the severity of chronic lung diseases, causes inflammation of lung tissue, causes changes in blood chemistry and can increase susceptibility to viral and bacterial pathogens.
Step 1 - Reduce air leakage
Click here for a good basic guide on what can be done to both save energy (and money!) and reduce air leakage.
Simply reducing leakage won’t solve the pollution problem (reducing leakage by, say, 50%, won’t really help in pollution terms; the air inside will still be as polluted as the air outside), but the lower the leakage rate, the more effective the use of air cleaning technology will be.
Think about it this way: Sit an air cleaner, however effective, next to an open window, and it will be overwhelmed by new pollution to the point where it will have no effect. For an air cleaner to be effective, you have firstly to slow the flow of new air into a room to give it time to work.
So, reducing leakage is only the first step in mitigating the pollution problem. The second step is using an air cleaner that really works!
Step 2 – Remove or neutralise internal pollution
Having reduced air leakage, let’s look at our options for removing or neutralising polluting gasses and particulates before we breathe them in:
Can filters reliably remove or neutralise all of CO, NOx, VOCs and O3?
X No! CO, NOx, VOCs and O3 are gasses that cannot be filtered out by HEPA, Ionising (Ionic) or Electrostatic (Electronic) filters, which are all designed to filter out particulates, not gasses.
What about activated carbon filters?
These are sometimes suggested to remove these gasses from the air and can be implemented either as stand-alone filters or in combination with a HEPA filter to capture the larger particulates.
There are many problems with using this type of filter to address outside air pollution:
X So, all in all, activated carbon filters are not effective as a solution for removing gaseous pollutants.
OK, how about HEPA filters?
The ‘gold standard’ for particulate filters is the High Efficiency Particulate Air (HEPA) filter. Filters meeting the HEPA standard remove 99.97% of particles that have a size 0.3 microns or larger from the air passing through them.
However, 90% of particulates in the air, including the most harmful ones, are smaller than that, so most HEPA air purifiers only catch a fraction of all particulates, and none of the potentially most harmful ones.
X Hepa Filters will only remove 10% of the particulates. So, filters simply aren't effective at removing industrial and traffic pollution?
Correct. And air filters don't work well in the real world anyway! Not only are there no suitable and affordable filters for the purposes we require, the unfortunate fact is that portable air filtration devices, of whatever type, are not very effective at treating any kind of pollution.
All portable air filters share the same fundamental shortcoming; even if they do filter the air passing through them effectively, they only clean that limited amount of air that passes directly through them, not all of the air in the room. You can find out more here.
Then along came Airora…
Let us return to where we started, outdoors.
Outside, Nature wages a powerful and successful war of attrition against atmospheric pollution by employing natural chemical and photochemical interactions to create an abundance of ‘hydroxyl radicals’ (known as ‘Nature’s Detergent’ by scientists) which attack and neutralise a wide range of pollutants.
Find out more about how Airora breaks down harmful gasses and vaporises key ultra-fine particulates that are too small to be trapped by HEPA filters here.
5 Comments
Hay fever is a type of allergic rhinitis caused by pollen or spores. Allergic rhinitis is a condition where an allergen (something that causes an allergic reaction) makes the inside of your nose inflamed (swollen).
Hay fever usually occurs in spring and summer, when there is more pollen in the air. Trees, grass and plants release pollen as part of their reproductive process. Mould and fungi also release tiny reproductive particles, called spores.
People with hay fever can experience their symptoms at different times of the year, depending on which pollens or spores they are allergic to.
SymptomsHay fever symptoms vary in severity and your symptoms may be worse some years than others, depending on the weather conditions and the pollen count (see below). Your symptoms may start at different times of the year depending on which types of pollen you are allergic to.
The symptoms of hay fever include:
Less commonly, you may experience:
Hay fever is an allergic reactionHay fever symptoms are caused by protein molecules in pollen grains. The immune system ‘over-reacts’ to these allergens, which it manifests in the form of an allergic reaction. Immune molecules known as Immunoglobulin E are produced and these cause the release of the inflammatory chemical called histamine from mast cells (a type of immune cell).
It is histamine that produces the characteristic symptoms of an allergic reaction.
A non-allergic person’s immune system will not produce this reaction on exposure to allergens in pollen.
Hay fever and everyday life
Research shows that students’ academic performance may be affected during exams, given that the exam season usually coincides with the height of the pollen season.
How common is hay fever?Hay fever is a relatively new disease, first described in 1819. It took nine years to accumulate enough hay fever cases to present a paper on this new condition to a medical journal. Now hay fever is much more common, particularly in the UK, which has more cases than anywhere else in the world (followed closely by Ireland, New Zealand, Australia and Canada). Hay fever:
Hay fever and asthmaIf you have asthma, your asthma symptoms may get worse when you have hay fever. Sometimes, asthma symptoms only occur when you have hay fever. These symptoms include:
Pollen countHay fever symptoms are likely to be worse if the pollen count is high. The pollen count is the number of grains of pollen in one cubic metre of air.
Air samples are collected in traps set on buildings two or three storeys high. Taking samples from this height gives a better indication of the pollen in the air from both local and distant sources. Traps on the ground would only collect pollen from nearby trees and plants.
The air is sucked into the trap and the grains of pollen are collected on either sticky tape or microscope slides (glass plates). The pollen is then counted. Samples are usually taken every two hours, and the results are averaged for a 24-hour period.
The pollen forecast is usually given as:
Hay fever symptoms usually begin when the pollen count is over 50. The pollen count is usually given as part of the weather forecast during the spring and summer months.
Which pollens are you allergic to?
Spores that cause hay fever can come from:
When is there most pollen?Different trees and plants produce their pollen at different times of the year.
Depending on which pollen you are allergic to, you may experience your hay fever symptoms at different times. In the UK:
The effect of the weatherThe amount of sunshine, rain or wind affects how much pollen plants release and how much the pollen is spread around. On humid and windy days, pollen spreads easily. On rainy days, pollen may be cleared from the air, causing pollen levels to fall
During their pollen season, plants release pollen early in the morning. As the day gets warmer and more flowers open, pollen levels rise. On sunny days, the pollen count is highest in the early evening.
Confusing hay fever with other conditionsA person who appears to be suffering hay fever symptoms may be suffering from:
Alleviating hay feverIt is very difficult to completely avoid pollen or spores. However, reducing your exposure to the substances that trigger your hay fever should ease the severity of your symptoms. Follow the advice below to avoid being exposed to excessive amounts of pollen and spores.
When outside:
When indoors:
Finally, check the pollen count regularly to know when your efforts need to be more concentrated.
Can an air cleaner help?
While numerous manufacturers of ‘air cleaners’ / ‘air filters’ claim to be able to clear pollen from the air, they can only reduce, not eliminate, the problem, because:
|
AuthorDr Wyatt blogs on his lifetime's experience of Indoor Air Quality Issues. Archives
January 2022
Categories
All
|